An asymmetric dihydroxylation route to (2S,3S)-3-hydroxypipecolic acid

Mandar S. Bodas and Pradeep Kumar*
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411008, India
Received 19 August 2004; revised 9 September 2004; accepted 16 September 2004
Available online 1 October 2004

Abstract

A concise enantioselective synthesis of (2S,3S)-3-hydroxypipecolic acid $\mathbf{1}$ starting from 1,4-butanediol using Sharpless asymmetric dihydroxylation and the regioselective nucleophilic opening of a cyclic sulfate as the key steps is described. © 2004 Elsevier Ltd. All rights reserved.

Chiral, non-racemic piperidines are common structural units found in many biologically and medicinally important natural and non-natural products. It is thus not surprising that many new asymmetric synthetic methods have been developed for their syntheses. ${ }^{1}$ 3-Hydroxypipecolic acids $1-3$ (Fig. 1), six-membered cyclic α-amino-β-hydroxy acids, constitute non-natural variants of a structural motif often encountered in a variety of molecules and may be regarded as expanded hydroxylated proline or conformationally restricted serine derivatives. ${ }^{2}$ The piperidine unit of 3-hydroxypipecolic acid is found in a number of biologically important products. For example, the cis-isomer 2 forms a part of the structure of tetrazomine, ${ }^{3}$ an anti-tumor antibiotic, while the transisomer 1 is a precursor of $(-)$-swainsonine, which has shown potent and specific α-D-mannosidase inhibitory activity. ${ }^{4}$ It is also found in the structure of febrifugine, a potent anti-malarial agent. ${ }^{5}$ From a synthetic point of view, only a few enantioselective syntheses of $\mathbf{1}$ or its isomers have been reported. While the majority of these syntheses utilize either chiral pool starting materials ${ }^{3-6}$ or enzymatic resolution, ${ }^{7}$ reports in which all the stereogenic centers are constructed by asymmetric synthesis are

Figure 1.

[^0]rather scarce. ${ }^{8}$ As a part of our research program aimed at developing enantioselective syntheses of naturally occurring amino alcohols, ${ }^{9}$ we became interested in developing a simple and feasible route to 3-hydroxypipecolic acid. Herein we report a new and enantioselective synthesis of $\mathbf{1}$ employing the Sharpless asymmetric dihydroxylation as the source of chirality. The synthesis of the target compound 1 (Scheme 1) commenced from 1,4-butanediol 4, a commercially available starting material.

Mono hydroxyl protection of 4 with p-methoxybenzyl bromide in the presence of NaH gave 5 in 80% yield. Compound 5 was oxidized to the aldehyde and subsequently treated with (ethoxycarbonylmethylene)-triphenylphosphorane in benzene under reflux to furnish the Wittig product 6 in 80% yield. Dihydroxylation of olefin 6 under the Sharpless asymmetric dihydroxylation conditions ${ }^{10}$ using (DHQ) $)_{2} \mathrm{PHAL}$ ligand gave the diol 7^{11} in 85% yield and 97% ee. ${ }^{12}$

Our initial attempt to convert the α-hydroxyl group of 7 to an azide through its tosylate took a longer time to complete the reaction affording the product 9 in only moderate yield. Accordingly, the diol 7 was first converted into its cyclic sulfite derivative in 92% yield by treatment with SOCl_{2} and $\mathrm{Et}_{3} \mathrm{~N}$, which was further oxidized using NaIO_{4} and a catalytic amount of $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ to furnish the corresponding cyclic sulfate $\mathbf{8}$ in excellent yield. The essential feature of our synthetic strategy shown in Scheme 1 was based on the presumption that the nucleophilic opening of the cyclic sulfate 8 would occur in a regiospecific manner at the α-carbon atom. Indeed the cyclic sulfate $\mathbf{8}$ reacted with NaN_{3} with apparent complete selectivity for attack at $\mathrm{C}-2$, the α-position, to furnish the azido alcohol 9 in 94% yield. The carbonyl

Scheme 1. Reagents and conditions: (a) DMF, NaH , p $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}, 80 \%$. (b) (i) PCC, NaOAc, Celite, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, reflux $4 \mathrm{~h}, 80 \%$. (c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{FeCN}_{6}$, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}$, (DHQ$)_{2} \mathrm{PHAL}(1 \mathrm{~mol} \%), 0.1 \mathrm{M} \mathrm{OsO} 4$ ($0.4 \mathrm{~mol} \%$), t $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), 85%. (d) (i) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (ii) $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, \mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1.5), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$. (e) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 94 \%$. (f) (i) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$; (ii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, $\mathrm{Boc}_{2} \mathrm{O}$, $\mathrm{EtOAc}, 70 \%$. (g) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 95 \%$. (h) (i) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$, THF, $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 6 \mathrm{~h}$; (ii) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1), 1.5 \mathrm{~h}$; then Dowex 50, 90\%.
group must be responsible for the increased reactivity of the α-position. ${ }^{13}$

Deprotection of the p-methoxybenzyl group with DDQ followed by reduction of the azide 9 under hydrogenation conditions in the presence of $\mathrm{Boc}_{2} \mathrm{O}$ gave the amino diol 10. ${ }^{14}$ Compound $\mathbf{1 0}$ was subjected to cyclization using methanesulfonyl chloride and triethylamine at $-78^{\circ} \mathrm{C}$ to afford 11 in 95% yield. The subsequent ester hydrolysis with lithium hydroxide in THF/ $\mathrm{H}_{2} \mathrm{O}$ followed by deprotection of the Boc group with trifluoroacetic acid furnished ($2 S, 3 S$)-3-hydroxypipecolic acid 1 as a white solid $\left[\mathrm{mp}-232-236^{\circ} \mathrm{C}\right.$ (lit. $\left.\left.{ }^{5}{ }^{20} 230-238^{\circ} \mathrm{C}\right)\right]\left\{[\alpha]_{\mathrm{D}}^{20}+13.5\right.$ (c $0.2,10 \%$ aq. HCl$)\left[\right.$ lit. ${ }^{5}[\alpha]_{\mathrm{D}}^{20}+12.90$ (c $0.23,10 \%$ aq. $\mathrm{HCl})]\}$ in 90% yield. The physical and spectroscopic data of $\mathbf{1}$ are in full agreement with the literature data. ${ }^{6}$

In conclusion, a practical and enantioselective synthesis of 3-hydroxypipecolic acid 1 has been achieved using Sharpless asymmetric dihydroxylation with regioselective opening of a cyclic sulfate. To the best of our knowledge, this is the first asymmetric synthesis of 3-hydroxypipecolic acid using Sharpless asymmetric dihydroxylation as the source of chirality. The synthetic strategy described has significant potential for further extension to other isomers and related analogues. Currently studies are in progress in this direction.

Acknowledgements

M.S.B. thanks CSIR, New Delhi for the award of Senior Research Fellowship. We are grateful to Dr. M. K. Gur-
jar for his support and encouragement. P.K. is thankful to DST, New Delhi for generous funding of the project. This is NCL Communication No. 6669.

References and notes

1. (a) Wang, C. J.; Wuonota, M. A. Org. Prep. Proced. Int. 1992, 24, 585-621; (b) Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun. 1998, 633-640.
2. Hanessian, S.; M-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789-12854.
3. Scott, J. D.; Tippie, T. N.; Williams, R. M. Tetrahedron Lett. 1998, 39, 3659-3662.
4. Ferreira, F.; Greck, C.; Genet, J. P. Bull. Soc. Chim. Fr. 1997, 134, 615-621.
5. Jourdant, A.; Zhu, J. Tetrahedron Lett. 2000, 41, 70337036, and references cited therein.
6. (a) Battistini, L.; Zanardi, F.; Rassu, G.; Spanu, P.; Pelosi, G.; Fava, G. G.; Ferrari, M. B.; Casiraghi, G. Tetrahedron: Asymmetry 1997, 8, 2975-2987; (b) Roemmele, R. C.; Rapoport, H. J. Org. Chem. 1989, 54, 1866-1875; (c) Agami, C.; Couty, F.; Mathieu, H. Tetrahedron Lett. 1996, 37, 4001-4002; (d) Horikawa, M.; Busch-Petersen, J.; Corey, E. J. Tetrahedron Lett. 1999, 40, 3843-3846; (e) Haddad, M.; Larcheveque, M. Tetrahedron Lett. 2001, 42, 5223-5225.
7. (a) Knight, E. W.; Lewis, N.; Share, A. Tetrahedron: Asymmetry 1993, 4, 625-628; (b) Scott, J. D.; Williams, R. M. Tetrahedron Lett. 2000, 41, 8413-8416.
8. Greck, C.; Ferreira, F.; Genet, J. P. Tetrahedron Lett. 1996, 37, 2031-2034.
9. (a) Fernandes, R. A.; Kumar, P. Tetrahedron: Asymmetry 1999, 10, 4797-4802; (b) Fernandes, R. A.; Kumar, P. Eur. J. Org. Chem. 2000, 3447-3449; (c) Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2000, 41, 10309-10312; (d) Pandey, R. K.; Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2002, 43, 4425-4426; (e) Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2003, 44, 1035-1037; (f) Kandula, S. V.; Kumar, P. Tetrahedron Lett. 2003, 44, 1957-1958; (g) Pandey, R. K.; Upadhyay, P. K.; Kumar, P. Tetrahedron Lett. 2003, 44, 6245-6246; (h) Gupta, P.; Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2003, 44, 4231-4232; (i) Bodas, M. S.; Upadhyay, P. K.; Kumar, P. Tetrahedron Lett. 2004, 45, 987-988; (j) Pandey, S. K.; Kandula, S. V.; Kumar, P. Tetrahedron Lett. 2004, 45, 58775879.
10. (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547; (b) Torri, S.; Liu, P.; Bhuvaneswari, N.; Amatore, C.; Jutand, A. J. Org. Chem. 1996, 61, 3055-3060.
11. The spectral data for $7:[\alpha]_{\mathrm{D}}^{20}+2.87\left(c \quad 1.08, \mathrm{CHCl}_{3}\right)$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 1032,1130,1248,1513,1612,1736$, 2864, 2938, 3440; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30(\mathrm{t}$, $3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.73(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.49(\mathrm{t}, 2 \mathrm{H}$, $J=6 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~d}, 1 \mathrm{H}, J=5 \mathrm{~Hz}), 4.06(\mathrm{~m}$, $1 \mathrm{H}), 4.26(\mathrm{q}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}$, $J=10 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=10 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 13.77,25.69,30.03,42.58,54.83,61.21,69.51$, 72.12, 73.41, 113.48, 128.97, 130.14, 158.87, 173.21; Mass (ESI): $312\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 61.52 ; \mathrm{H}$, 7.74. Found: C, 61.66; H, 7.70.
12. For the measurement of the enantiomeric excess, the diol 7 was converted into its dibenzoate. The enantiomeric purity of the dibenzoate was estimated to be 97% by chiral HPLC analysis using Lichocart $250-4(4 \mathrm{~mm}$ ID $\times 25 \mathrm{~cm}$) HPLCCartridge (R.R.-Whelk-01), $10 \% i$ - PrOH in hexane, $0.8 \mathrm{~mL} / \mathrm{min}$.
13. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper \& Row: New York, p 321, and references cited therein.
14. The spectral data for 10: $[\alpha]_{\mathrm{D}}^{20}-10.74\left(c 1.00, \mathrm{CHCl}_{3}\right)$: IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1711,1736,2935,3431 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.27(\mathrm{t}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.42(\mathrm{~s}, 9 \mathrm{H})$,
$1.69(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.16-4.26$ (m, 3H), 5.58 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 14.08, 28.27, 29.97, 30.33, 58.67, 61.43, 62.16, 72.56, 80.17, 155.93, 170.80; Mass (ESI): $291\left(\mathrm{M}^{+}\right), 203,147$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, $53.59 ; \mathrm{H}, 8.65 ; \mathrm{N}, 4.81$. Found: C, $53.52 ; \mathrm{H}, 8.55 ; \mathrm{N}, 4.95$.

[^0]: * Corresponding author. Tel.: +91 20 25893300x2050; fax: +91 20

 25893614; e-mail: tripathi@dalton.ncl.res.in

