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Abstract—A concise enantioselective synthesis of (2S,3S)-3-hydroxypipecolic acid 1 starting from 1,4-butanediol using Sharpless
asymmetric dihydroxylation and the regioselective nucleophilic opening of a cyclic sulfate as the key steps is described.
� 2004 Elsevier Ltd. All rights reserved.
Chiral, non-racemic piperidines are common structural
units found in many biologically and medicinally impor-
tant natural and non-natural products. It is thus not
surprising that many new asymmetric synthetic methods
have been developed for their syntheses.1 3-Hydroxy-
pipecolic acids 1–3 (Fig. 1), six-membered cyclic a-amino-
b-hydroxy acids, constitute non-natural variants of a
structural motif often encountered in a variety of mole-
cules and may be regarded as expanded hydroxylated
proline or conformationally restricted serine derivatives.2

The piperidine unit of 3-hydroxypipecolic acid is found in
a number of biologically important products. For exam-
ple, the cis-isomer 2 forms a part of the structure of
tetrazomine,3 an anti-tumor antibiotic, while the trans-
isomer 1 is a precursor of (�)-swainsonine, which has
shown potent and specific a-DD-mannosidase inhibitory
activity.4 It is also found in the structure of febrifugine,
a potent anti-malarial agent.5 From a synthetic point of
view, only a few enantioselective syntheses of 1 or its iso-
mers have been reported. While the majority of these syn-
theses utilize either chiral pool starting materials3–6 or
enzymatic resolution,7 reports in which all the stereogenic
centers are constructed by asymmetric synthesis are
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Figure 1.
rather scarce.8 As a part of our research program aimed
at developing enantioselective syntheses of naturally
occurring amino alcohols,9 we became interested in devel-
oping a simple and feasible route to 3-hydroxypipecolic
acid. Herein we report a new and enantioselective synthe-
sis of 1 employing the Sharpless asymmetric dihydroxyla-
tion as the source of chirality. The synthesis of the target
compound 1 (Scheme 1) commenced from 1,4-butanediol
4, a commercially available starting material.

Mono hydroxyl protection of 4 with p-methoxybenzyl
bromide in the presence of NaH gave 5 in 80% yield.
Compound 5 was oxidized to the aldehyde and subse-
quently treated with (ethoxycarbonylmethylene)-triphen-
ylphosphorane in benzene under reflux to furnish the
Wittig product 6 in 80% yield. Dihydroxylation of olefin
6 under the Sharpless asymmetric dihydroxylation con-
ditions10 using (DHQ)2PHAL ligand gave the diol 711

in 85% yield and 97% ee.12

Our initial attempt to convert the a-hydroxyl group of 7
to an azide through its tosylate took a longer time to com-
plete the reaction affording the product 9 in only moder-
ate yield. Accordingly, the diol 7 was first converted into
its cyclic sulfite derivative in 92% yield by treatment with
SOCl2 and Et3N, which was further oxidized using
NaIO4 and a catalytic amount of RuCl3ÆH2O to furnish
the corresponding cyclic sulfate 8 in excellent yield. The
essential feature of our synthetic strategy shown in
Scheme 1 was based on the presumption that the nucleo-
philic opening of the cyclic sulfate 8 would occur in a
regiospecific manner at the a-carbon atom. Indeed the
cyclic sulfate 8 reacted with NaN3 with apparent
complete selectivity for attack at C-2, the a-position,
to furnish the azido alcohol 9 in 94% yield. The carbonyl
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Scheme 1. Reagents and conditions: (a) DMF, NaH, p-

MeOC6H4CH2Br, 80%. (b) (i) PCC, NaOAc, Celite, CH2Cl2, 0 �C;
(ii) Ph3P@CHCO2Et, benzene, reflux 4h, 80%. (c) K2CO3, K3FeCN6,

CH3SO2NH2, (DHQ)2PHAL (1mol%), 0.1M OsO4 (0.4mol%), t-

BuOH/H2O (1:1), 85%. (d) (i) SOCl2, Et3N, CH2Cl2, 0 �C, 20min; (ii)

RuCl3ÆH2O, NaIO4, CCl4/CH3CN/H2O (1:1:1.5), 0 �C, 2h, 92%. (e)

NaN3, DMF, 80�C, 94%. (f) (i) DDQ, CH2Cl2, H2O; (ii) H2/Pd–C,

Boc2O, EtOAc, 70%. (g) MsCl, Et3N, CH2Cl2, �78�C, 95%. (h) (i)

LiOHÆH2O, THF, MeOH, H2O, 6h; (ii) TFA/CH2Cl2 (1:1), 1.5h; then

Dowex 50, 90%.
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group must be responsible for the increased reactivity of
the a-position.13

Deprotection of the p-methoxybenzyl group with DDQ
followed by reduction of the azide 9 under hydrogena-
tion conditions in the presence of Boc2O gave the amino
diol 10.14 Compound 10 was subjected to cyclization using
methanesulfonyl chloride and triethylamine at �78 �C to
afford 11 in 95% yield. The subsequent ester hydro-
lysis with lithium hydroxide in THF/H2O followed by
deprotection of the Boc group with trifluoroacetic acid
furnished (2S,3S)-3-hydroxypipecolic acid 1 as a white
solid [mp �232–236 �C (lit.5 230–238 �C)] {½a�20D +13.5
(c 0.2, 10% aq. HCl) [lit.5 ½a�20D +12.90 (c 0.23, 10% aq.
HCl)]} in 90% yield. The physical and spectroscopic
data of 1 are in full agreement with the literature data.6a

In conclusion, a practical and enantioselective syn-
thesis of 3-hydroxypipecolic acid 1 has been achieved
using Sharpless asymmetric dihydroxylation with regio-
selective opening of a cyclic sulfate. To the best of our
knowledge, this is the first asymmetric synthesis of
3-hydroxypipecolic acid using Sharpless asymmetric
dihydroxylation as the source of chirality. The synthetic
strategy described has significant potential for further
extension to other isomers and related analogues. Cur-
rently studies are in progress in this direction.
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